The first year as a Tier II University Transportation Center for the Utah Transportation Center has been a successful one; full of growth, strengthening old relationships and building new ones.

We have been able to strengthen our long-standing partnership with the Utah Department of Transportation (UDOT), both financially and technically. During this first year, with funding available through the UTC program, we have been able to partner with UDOT to fund four research projects with budgets totally more than $324,000. We look forward to continuing this partnership with UDOT. We anticipate long-term benefit for the advancement of transportation research generally and providing specific research that will enhance UDOT’s ability to manage Utah’s complex transportation infrastructure.

We have also developed two very strong, yet different, relationships with other transportation entities during this first year. One of these is a partnership developed between our center, the Utah Transportation Center, and the university transportation center at Rutgers, the Center for Advanced Infrastructure and Transportation (CAIT). We have collaborated on a very significant proposal for the FHWA Long Term Bridge Performance Program, and look forward to further collaborative endeavors with the CAIT group. The second of these new relationships is the one that has grown between the Utah Transportation Center and the Utah Transit Authority (UTA). The UTC wholly funded one research project for UTA, looking at passenger counting technology, and a second project, to be funded 100% by UTA, is currently under contract negotiations. This partnership between the UTC and UTA will focus on the application of existing technologies to optimize the operations of major transit agencies. This is a very exciting relationship and will bring colleagues from other engineering disciplines into the Utah Transportation Center which has up to this point consisted mainly of civil engineering colleagues.

From a purely financial point of view, the Utah Transportation Center managed to leverage its Tier II Federal funding at a 1.65:1 ratio, with a total center budget of nearly $1,139,000 (see figures on page 10). This type of leverage means more research projects and technology transfer, graduate student scholarships, and in the not too distant future an additional faculty member specializing in transportation.

So after a great first year, the future looks bright for the Utah Transportation Center and we look forward to sharing that bright future with you.
TABLE OF CONTENTS

About the Utah Transportation Center .. 1

Colleague Highlights
 Marvin W. Halling .. 2
 Paul J. Barr .. 3
 Keri L. Ryan ... 4
 Chris Winstead ... 5
 James A. Bay ... 6
 Brian M. Kukay, Student of the Year .. 6

2006-07 Utah Transportation Center Projects 7

2006-07 Presentations & Publications ... 8

2006-07 Facts & Figures .. 10

Advisory Board ... 11
About the Utah Transportation Center

The theme for the Utah Transportation Center (UTC) is “Innovative Engineering Against Hazards” and comes from the core expertise of the initial group of colleagues associated with the Center. For the past decade the transportation research expertise within the Department of Civil and Environmental Engineering (CEE) at Utah State University has been in areas addressing natural hazards: earthquakes, landslides, and flooding. It was decided to mold the Center around this expertise and then reach out to other colleagues to provide expertise that can be applied to both hazards and other areas of transportation—congestion and transit being two prime examples. Congestion relating to evacuation issues in the case of a natural hazard, and transit being simply the mass movement of people for whatever reason, be it commuting or evacuation.

This approach has been very successful in the first year of the Center, particularly in the association of colleagues in the Department of Electrical and Computer Engineering (ECE) to perform transit research. As the Center moves forward, it is anticipated that more faculty from the ECE department will become involved in Center activities, as well as the USU College of Natural Resources.

The educational activities of the Center primarily involve instruction by CEE faculty associated with the Center. These faculty teach transportation-related courses in many disciplines of civil engineering: surveying, structures, hydraulics, operations, transportation design, planning, and engineering economics. The research activities, as discussed above, focus on “engineering against hazards,” and the principal research partner for the Center in its first year has been the Utah Department of Transportation (UDOT). In the future, it is expected that this field of partners will expand significantly to include the Federal Highway Administration (FHWA), the Utah Transit Authority (UTA), and other local governmental entities.

The technology transfer activities of the Center this past year have been in the presentation of papers at professional conferences—the annual Transportation Research Board meeting being the principal medium for these presentations. Peer reviewed journal publications are also a key element to the Center’s technology transfer activities (see page 8-9 for the list of presentations and publications). The Utah LTAP Center is located in the CEE department at Utah State University, but as of yet the ability to utilize the Utah LTAP Center for dissemination of Center research results has been limited. This is a relationship that both the Utah LTAP Center and the Center look to improve over the near future.

The Utah Transportation Center is located on the campus of Utah State University, in Logan, Utah. Since its founding in 1888, Utah State University has evolved from a small, agricultural college to one that is nationally and internationally recognized for its intellectual and technological leadership in land, water, space, and life enhancement.
Dr. Marvin W. “Marv” Halling serves as associate director of the Utah Transportation Center and as a structural engineer in Utah, is very aware of the impact of earthquakes on structures.

But in the past few years, he has migrated from a purely earthquake emphasis to a more broad look at structural health. This is no more evident than in his current research project with the Utah Transportation Center, “Real Time Health Monitoring of the 21st South Overpass.”

This project has converted a seismic instrumentation package into use as a real-time web-based vibration monitoring system. The data gathered through this instrumentation is a key part in monitoring the structural health of this bridge as well as aiding in overall damage detection.

It is expected that the data gathered through this monitoring will prove critical in helping determine the health of this bridge before and after a damaging event. This is a critical step toward a future of “smart structures” that will help monitor themselves and provide data on their own health, allowing for more efficient use of resources in safeguarding our nation’s infrastructure. This project meshes well with work Dr. Halling is doing with Center colleague, Dr. Paul Barr, on other areas of structural health.

In addition to this project, Dr. Halling is principal investigator on the following projects:
- Strong Motion Instrumentation Plan for UDOT Bridges: Array Design, Typical Details, and Specifications
- Structural Health Monitoring Using Vibrational Techniques of a Multispan Flyover Bridge

Dr. Halling has been a part of the Civil & Environmental Engineering faculty at Utah State University since 1994 (currently serving as Associate Professor and Head of the Structural Division), but he is not a newcomer to Utah State. In fact, he received his BS degree in Civil Engineering from USU. This was followed by his MS degree from Stanford and his PhD from CalTech in Applied Mechanics (with a minor in geophysics).

His expertise goes beyond the walls of Utah State and he serves as a member of the ASCE Seismic Effects Committee, ASCE Structural Health Monitoring Committee and the TRB ASF40 Dynamics and Field Testing of Bridges Committee as well as serving as an Associate Editor of the ASCE Journal of Structural Engineering. He is a licensed professional engineer in both Utah and California.
Dr. Paul Barr first became interested in civil engineering because he said, “I just liked being around construction projects.”

That fascination took Dr. Barr to Utah State University for his bachelor’s degree in Civil Engineering, and from there to the University of Washington for his Masters and PhD.

After receiving his PhD, he took his first full-time position as Assistant Professor at New Mexico State University. When the job opening came up at Utah State University in 2003, he thought he would enjoy working at Utah State and he hasn’t been disappointed. Since then, his research interests have focused on nondestructive evaluation of bridges due to earthquake loads, live loads, changes in temperature, and prestress losses.

Dr. Barr truly enjoys bridge research; this includes sharing that enthusiasm with students on bridge-related projects.

In all that work, Dr. Barr never loses sight of providing a useful end product for project funders. And in the case of his projects with the Utah Transportation Center, that means UDOT and the FHWA. Each of Dr. Barr’s projects with the UTC has the focus of a better understanding of bridge behavior and design.

Even in a field as old as civil engineering, new and cutting edge technology has emerged to help in conducting research. Dr. Barr noted that they are working on some nondestructive methods that hopefully will be useful in the future for determining residual prestress losses. This kind of technological breakthrough will save money for state DOTs in the long run.

Dr. Barr is the principal investigator for the following projects:
- UDOTs Calibration of AASH-TO’s New Prestress Loss Design Equations
- Development and Testing of a Non-Destructive Method for Determining Residual Pre-stress
- A Comparison of Time Dependent Prestress Losses in a Two-span, Prestressed Concrete Bridge
- Dynamic and Static Behavior of a Curved-girder Bridge with Varying Boundary Conditions
- Long-term Structural Health Monitoring of the San Ysidro Bridge

Dr. Barr is a member of the American Society of Civil Engineers (ASCE) and Prestressed Concrete Institute (PCI).

Dr. Barr also serves on a variety of committees:
- ASCE Seismic Effects Committee (Secretary), 2005-present
- ASCE Field Testing Committee, 2006-present
- PCI Committee on Bridges, 2004-present
- SEI Committee on Structural Identification of Constructed Systems, 2006-present
- PCI Prestress Loss Committee, 2004-present

During his career, Dr. Barr has also received several honors and awards:
- Outstanding Advisor, Utah State University, Logan, 2004
- Outstanding Teacher, Utah State University, Logan, 2004
- Professor of the Year, New Mexico State University, Las Cruces, 2003
Dr. Keri Ryan, an Idaho native, joined the USU faculty in 2004 and currently serves as an Assistant Professor in the Structures Division of the Civil & Environmental Engineering Department. Dr. Ryan received her BS in Engineering and Applied Science from the California Institute of Technology, followed by her MS and PhD in Civil and Environmental Engineering from the University of California, Berkeley.

Dr. Ryan’s expertise lies in analytical modeling and seismic analysis of structural components and systems, with emphasis in the area of seismic isolation and protective systems. Dr. Ryan is applying this expertise as the principal investigator on a UDOT/UTC project entitled, “Evaluation of Bridges for Seismic Retrofit.”

Dr. Ryan uses computer modeling and analysis extensively for this project and other research work she is involved in. Her work is truly “math in action” with practical application as the end result of her work.

In particular, she anticipates that her analysis of the performance and practicality of seismic isolation measures will allow decision-makers to gain a greater understanding of these measures. It is anticipated that this will lead to greater demand and thus supply of isolation measures that will eventually bring down the cost and allow greater use of seismic isolators on such structures as bridges and buildings.

In Utah, and other seismically active states, a major seismic event has the potential to completely disrupt transportation systems. This would prove catastrophic across the economic and social spectrum for the affected areas.

Seismic isolators are a critical part of the solution in the aftermath of a seismic event. They allow the public to, for example, continue driving on bridges after a seismic event or utilize a building until repairs can be made. A decrease in the cost of this technology, through greater implementation, would bring great benefit for the public. At present, seismic isolation systems have to be built from scratch by suppliers because of the limited demand, and that makes it a cost prohibitive technology for many local agencies and even state and federal agencies.

To that end, Dr. Ryan is looking at three specific plan sets for bridges built in the 1960s (since many of bridges built in the 1950s and 60s are still in use today). These specific examples will provide feedback for modeling in the LARSA computer software system. That model will then lead to new bridge analysis measures, and feedback on how best to build new bridges. The project will provide the Utah Department of Transportation with the ability to use more advanced analysis techniques for analyzing bridges on the State transportation system.
When asked what first interested Dr. Chris Winstead in engineering, he replied, “I believe it was probably my first experience with lego building blocks that led me into engineering. It might also have started earlier with alphabet blocks...I’ve just always been building things.”

That interest sent him to the University of Utah for his undergraduate work and later to the University of Alberta where he received his PhD.

His partnership with the Utah Transportation Center has provided a variety of opportunities for Dr. Winstead. He commented, “My background is in the general theory of telecommunication technology, where it is all too easy to lose track of real-world needs and limitations. My work with the UTC created an opportunity to study the varieties of technical solutions that are being deployed in commuter rail installations. These installations offer a very practical way to measure the cost-effectiveness and reliability of some of the latest wireless technologies. This information will influence future directions for theoretical research.”

Dr. Winstead is “fascinated by failures.” He likes to understand what happened when a great idea failed to work out in practice. With the “River of RF” project, he is looking at “a few ‘good’ examples of lackluster wireless deployments.” By understanding these, they can create an effective wireless system for the Utah Transit Authority commuter rail systems including advising UTA on technology options, and assessing the best network design choices for long-term reliability and value. Dr. Winstead tells us that, “It was most interesting to see the wide variety of low-to-medium bandwidth solutions that were successfully deployed in rail installations around the world. Some of these used satellite links or cell network connections, and some used older WiFi approaches that are not originally intended for highly-mobile applications. Although these networks employed some ingenious designs and were “good enough” to satisfy customer needs, the newer WiMAX approach has fast become dominant in new installations. It will be interesting to see, in the long term, whether it proved more advantageous to offer low-bandwidth access early (and consequently be saddled with outdated technology after a few years), or was it ultimately more cost-effective to wait for the higher-quality WiMAX systems to mature? This question will soon be recapitulated by the emerging 802.24 standard, which is intended to replace WiMAX for high-speed rail systems.”

He anticipates that the greatest benefit from this research will lead to “[discovery] of some practical difficulties for high-speed wireless access that have been overlooked in theoretical analysis. This will help us refocus our work on wireless systems onto problems that have the highest impact for real-world deployments.”

In the field of electrical engineering, there is always some new or cutting edge technology emerging to help in conducting research. For the “River of RF” project this has been WiMAX. In Dr. Winstead’s words, “the real benefit is that it organizes many independent vendors and developers around a well-defined game plan...Now that the standard is relatively stable, companies are able to work together to economically deliver all the parts of a complex wireless network system that will work in a fast-moving train. When the industry crystalizes around a new standard, doors open everywhere for exciting new applications.”
The Utah Transportation Center recognized Brian M. Kukay as the “Student of the Year” for 2007. Brian is from Butte, Montana and is currently pursuing a Ph.D in Civil Engineering at Utah State University. Under the direction of Dr. Paul Barr, Dr. Marv Halling and Dr. Kevin Womack, his research efforts focus on the development (and testing) of a non-destructive method to determine residual tendon stress in pre-stressed girders.

The ability to determine the remaining force in the tendons of in service pre-stressed girders is important in both bridge load ratings and repairing damaged pre-stressed members. Should this method prove accurate and doable in the field, this will be a significant advancement in the area of bridge inspection, rating and repair; which could ultimately save significant amounts of money (because actual bridge capacities may be determined and not have to be conservatively estimated).

Ultimately, Brian’s goal is to seek out an academic appointment at a school of higher education. Accordingly, he would be able to fulfill his passion for teaching and conducting research related to reinforced concrete at a four-year college or university.
2006-07 Utah Transportation Center Projects

Projects receiving UTC funding

New Projects

UTC0701 “Evaluation of Bridges for Seismic Retrofit,” Dr. Keri Ryan, PI. *Co-funded by the Utah Department of Transportation (UDOT).*

UTC0702 “UDOT’s Calibration of AASHTO’s New Prestress Loss Design Equations,” Dr. Paul Barr, PI. *Co-funded by UDOT.*

UTC0703 “Strong Motion Instrumentation Plan for UDOT Bridges: Array Design, Typical Details, and Specifications,” Dr. Marvin Halling, PI. *Co-funded by UDOT.*

UTC0704 “Failure Modes Analysis of UDOT’s MSE Wall Inventory,” Dr. James Bay, PI. *Co-funded by UDOT.*

Completed Projects

UTC0706 “Wireless Broadband for Commuter Rail: ‘River of RF’,“ Dr. Chris Winstead, PI.

Other Utah Transportation Center Projects

(not receiving UTC funding)

UTC0705 “Logan Bluff Landslide Risk Analysis,” Dr. James Bay, PI. *Funded by UDOT.*

Other Projects

Executed by Utah Transportation Center Colleagues

• “Structural Health Monitoring Using Vibrational Techniques of a Multi-span Flyover Bridge,” Dr. Marvin Halling, PI.
• “A Comparison of Time Dependent Prestress Losses in a Two-span, Prestressed Concrete Bridge,” Dr. Paul Barr, PI.
• “Dynamic and Static Behavior of a Curved Girder Bridge With Varying Boundary Conditions,” Dr. Paul Barr, PI.
• “Long Term Health Monitoring of the San Ysidro Bridge,” Dr. Paul Barr, PI.
Presentations
listed alphabetically by lead author

Publications
listed alphabetically by lead author

Utah Transportation Center Publications
available at the Utah Transportation Center Website: http://transportation.usu.edu

2006-07 Facts & Figures

Utah Transportation Center Funding

Funding by Source
Total budget for FY2007 is $1,138,890.00 and includes funds from all sources.

Funding by Use
includes all funds expended and encumbered during FY2007.

Utah State University 42%
U.S. Department of Transportation 38%
Utah Department of Transportation 10%
Special State Appropriations 10%
Research 36%
UTC Administration 13%
Scholarships 6%
University Facilities & Administration 27%
Education 18%
ADVISORY BOARD

Dr. William Rahmeyer, P.E.
Advisory Board Chair and Head, Department of Civil & Environmental Engineering, Utah State University

Bryan Cawley, P.E.
Assistant Division Administrator, Federal Highway Administration

Clair Fiet
Chief Technology Officer, Utah Transit Authority

Ian M. Friedland, P.E.
Technical Director, Bridge & Structures R&D, Federal Highway Administration

Ron Hynes
Deputy Associate Administrator, Federal Transit Administration

Jim McMinimee, P.E.
Director, Project Development Division, Utah Department of Transportation

Benjamin Tang, P.E.
Bridge Preservation Managing Engineer, Oregon Department of Transportation

The Utah Transportation Center is housed in the Civil & Environmental Engineering Department in the College of Engineering, on the campus of Utah State University in Logan, Utah.